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Lynn R. Trusal

ABS~ItACT:

Platelet interactions with cultured bovine endothelial cells were studied

following freeze-thaw damage or detergent treatment. Platelets from whole

blood (WB), platelet rich plasma (PRP) or gel filtered (GFP) did not interact

directly with freeze-thaw damage endothelial cells. Freezing and thawing did

result in the exposure of an extracellular matrix (ECM) located beneath the

cells, which proved very thrombogenic. Platelets from all sources attached to

both microfilament and amorphous components of the ECM, although only

platelets from WB demonstrated aggregation and extensive pseudopodia

formation. Treatment of cells with Triton-X detergent resulted in exposure of a

intracellular cytoskeleton. Most platelets attached to the cytoskeleton were

located near the cell border and had one or more pseudopodia either in contact

with extracellular material or penetrating the cytoskeleton. Adhesion of

platelets to ECM may represent platelet-collagen or platelet-fibronectin

interactions since both are produced by and incorporated into the ECM. Platelet

interaction with endothelial cytoskeletons probably represented pseudopodia

contact with the now exposed ECM located beneath the endothelial cells. The

possibility that platelets also adhered to intracellular components could not be

eliminated. These findings are in agreement with data from an isolated aorta

freeze-thaw injury model.. In addition, they tend to indicate that physical insult

was not sufficient to induce platelet interaction with the endothelial surface, but

that chemical modification (TX treatment) enhanced platelet deposition.

Key Words: Endothelial cell, platelets, extracellular matrix, Triton-X.
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INTRODUCTION:

The role of platelets in hemostatis is well documented (17,21). It is

accepted that platelets do not interact with undamaged endothelium in vivo

(2,22,31,37), with blood vessel segments in vitro (3,35,40) or when endothelium is

removed from the initimal lining and cultered in vitro (6,14,44,48). Although

prostaglandin 12 (PGI2) has been implicated in thromboresistance of intact

endothelium (9,32) other reports lend doubt to this conclusion (12,13).

In contrast, when endothelium is damaged by various means some reports

indicate that direct platelet-endothelial interactions occur (11,23,30) while

others do not find such interactions (1,10,42,43,44,46). We have reported that

when bovine endothelial cells are freeze-thawed in aorta segments in vitro and

perfused with either bovine platelet rich plasma (PRP) or gel filtered platelets

(GFP) there is no direct or generalized platelet adhesion to damaged endothelium

(40,41). Platelets did readily adhere to subendothelial components and were

often found between gaps of adjacent endothelial cells or in simultaneous

contact with subendothelium and the borders of endothelial cells. The present

study describes the use of an in vitro perfusion system for the evaluation of

platelet interactions with endothelial cells cultured on plastic substrates. The

study was designed to compare the finding to those from our previous study of

platelet-blood vessel wall interactions following freeze-thaw injury. In addition

to physical stress to the endothelium, it was of interest to determine the effect

of chemical modification (detergent treatment) of the endothelial surface on

platelet-endothelial interactions.
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MATERIALS AND METHODS:

Processing and Identification of Endothelial Cells

Bovine aorta endothelial cells (BAEC) were obtained by collagenase

( mg/ml) perfusion of the luminal surface of thoracic aortas obtained from a

local slaughter house, essentially as previously described (28). Cells (5-

6 x 105 cells ml) were counted and seeded into Leighton tubes (Costar,

Cambridge, MA) containing a plastic (polymethylpentene) coverslip. Growth

media consisted of Medium 199 (GIBCO, Grand Island, N.Y.) supplemented with

20% fetal bovine serum, 2mm L-glutamine, 50 1ig/ml gentamicin and 2.5 iJg/ml

fungizone. Cultures were then placed in a 37 0 C, 5% CO 2 incubator until cell

growth reached confluency in 2-3 days. Cultures treated with Triton-X (TX)

were usually 6-7 days old.

Indentification of endothelial cells was carried out by both transmission

electron microscopy and immunofluoresconoe techniques, using the presence of

Weibel-Palade (W-P) bodies (16,45) and Factor VIII antigen (25) as definitive

markers, respectively.

Blood Processing

Whole blood was collected from jugular vein of unanesthetized calves into

plastic centrifuge bottles containing anticoagulant (acid citrate dextrose).

Platelet rich plasma (PRP) was prepared by centrifugation at 1500 rpm for 12-14

min at 22 C. Platelet poor plasma (PPP)'was collected by centrifugation of PRP

at 3300 rpm for 30 min.

Aggregometry

Both PRP and GFP were tested for their ability to aggregate in the

-. presence of adenosine diphosphate (ADP) and collagen. These tests were carried

out using a Payton aggregometer (Payton Assoc., Buffalo, NY) dccording to

.. -,.5
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established procedures (8). The final concentrations of ADP and collagen were

0.1 mg/ml and 0.26 mg/ml, respectively. Platelet counts were adjusted to

250,000 mm 3 before testing. All tests were carried out at 370 C with a stirring

rate of 900 rpm. No platelet suspensions were used unless they demonstrated at

least a 50% maximal aggregation response to both agents.

Gel filtration of platelets

Gel filtered platelets (GFP) were prepared by modification of previously

published procedures (27,38). Basically, the procedure consisted of layering PRP

onto a Sepharose 2B gel (Pharmacia Fine Chemicals, Piscataway, NJ) column

conditioned with a complete Tyrodes buffer containing dextrose (1%) and

albumin (3%). GFP were eluted into this same buffer, counted and tested for

their ability to aggregate prior to perfusion.

Freeze-Thaw System

Leighton tubes, in which endothelial cells had been grown, were submerged

in a 95% ethanol refrigerated water bath (Neslab, Portsmouth, NH). The rate of

freezing (approximately I C/min was measured by a thermocouple inserted in

the Leighton tube. The freezing rate was recorded on a Leeds and Northrup

(North Wales, PA) chart recorder. The Leighton tube media temperature was

lowered to -15 or -20°C and then thawed in a 370 C water bath, while control

tubes were maintained at 370C.

Detergent Treatment

Coverslip endothelial cell cultures were first rinsed in phosphate buffered

saline (PBS) and then immersed in a 0.5% solution of in PBS for 15-30 min (220C)

with occasional agitation. This was followed by multiple rinses in PBS to remove

residual detergent before placing coverslips in the perfusion chamber.

6



Lynn R. Trusal

Coverslip Perfusion System

Coverslips containing either control (37 0 C) or experimental (-W50, -20 0 C,

TX treated) endothelial cell cultures were removed from their respective

Leighton tubes. After the handle portion was removed, one experimental and

one control coverslip were placed in specially constructed siliconized glass

perfusion tubes so that the cell monolayer faced the lumen of the tube (Fig. 3).

The ends of the tubes were stoppered and attached to the perfusion system as

detailed in Figure 1. Plastic pipettes, silicon stoppers, silastic tubing and

siliconized flasks and perfusion chambers were used to prevent platelet

activation. Platelet counts (PRP and GFP) were adjusted to 250,000 mm 3 using,

PPP or Tyrodes buffer, respectively. Platelet suspensions or whole citrated

blood (WB) were perfused at a flow rate of 5 ml/min at 37 0 C, for 30 min.

Following perfusion the system was allowed to drain, followed by flushing with

PBS (15 min), and flow fixation for 30 min (5 ml/min).

TEM/SEM Processing

The plastic (polymethylpentene) coverslips used for SEM and TEM were

processed as previously described (39). Briefly, coverslips were rinsed in PBS

fixed in 2.5% buffered glutaraldehyde, post-fixed in 1% buffered osmium

tetroxide and dehydrated in a graded series of ethanol. One portion of the

coverslip was excised, critical point dried, mounted on stubs, sputter coated

(Au/Pd) and examined by SEM. The remaining piece of coverslip for TEM was

embedded in Epon-Araldite, polymerized, sectioned and stained for viewing.

RESULTS

Endothelial Cell Identification

Endothelial cell cultures exhibted positive cytoplasmic fluoresence after

staining for the presence of Factor VIII antigen by indirect immunofluorescence

7
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(Fig. 2). Only background fluoresence was noted in control cultures incubated

with PBS or FITC. In addition, TEM demonstrated the presence of WP bodies in

these cultured cells (Fig. 3).

Platelet Aggregation

Both sources of platelets (PRP and GFP) aggregated in the presence of

ADP or collagen. Maximal platelet aggregation occurred in 5-10 minutes in

response to ADP with GFP reaching a slightly higher maximum % aggregation.

In contrast, platelets from PRP responded better to collagen. Both PRP and

GFP reached maximum aggregation after collagen stimulation in 10-30 minutes.

Attesting to the stability of bovine platelets, both PRP and GFP maintained 95%

of their ability to aggregate in response to ADP or collagen, after storage for

12 hrs at 22 0 C.

In Vitro Perfusion

Control endothelial cell cultures perfused in vitro with PRP had no

platelets attached to either endothelial cells or to the plastic coverslip (Fig. 4).

This was also true of GFP perfused cultures. Freezing and thawing of the

endothelial cell monolayers in detachment of many from the coverslip.

Figure 5A illustrates a freeze-thaw (-200 C) damaged endothelial cell on a

coverslip pefused with PRP. A similar culture perfused with GFP is illustrated

in Figure 5B. These figures demonstrated the severe damage induced by freeze-

thaw insult to damage included perforated plasma membranes and ruffled cell

borders, as seen by SEM (Figs. 5A, B). Note, that although these cultures were

perfused with both PRP and GFP, only one platelet was found to be in direct

contact with the remaining cell body of an endothelial cell (Fig. 5A arrow). In

general, platelets were found to be attached to the microfilament network

exposed by the freeze-thaw procedure.
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The extracellular matrix (ECM), exposed by the freeze-thaw procedure

consisted of microfilaments of various diameters and amorphous material.

Figure 6A is an SEM micrograph of this ECM network, while a more detailed

structure can be seen in the TEM micrograph (Fig. 6B). Perfusion of WB, PRP or

GFP across this ECM resulted in adhesion of platelets to the microfilament

network. Figure 7A demonstrates the attachment of PRP to the ECM remaining

on the coverslip following freeze-thaw. Note that most platelets are still disc

shaped with few pseudopodia. In contrast, the platelets from WB demonstrated

an aggregation response that included extensive shape changes and formation of

many pseudopodia (Fig. 7B).

Figure 8A is a low magnification SEM showing the attachment of platelets

(WB) to a TX extracted BAEC monolayer. Note that the vast majority of

attached platelets are found between adjacent cells attached to filamentous

strands on the substrate. In a higher magnification photomicrograph, (Fig. SB)

platelets (WB) were found interacting directly with microfilaments located

bewteen adjacent cytoskeletons (Fig. 8B). Some platelets remain disc shaped

with short pseudopodia while others had morphological changes associated with

long pseudopods contacting the extracellular filaments. Detergent-treated

monolayers perfused with PRP or GFP demonstrated similar adhesion results but

the percent of activiated platelets (pseudopodia formation) was decreased.

Figure 9 illustrates a phenomena not seen in either control (370 C) or freeze-thaw

(-15, -20 0 C) damaged monolayers; the presence of attached platelets on the

surface of TX treated BAEC. Platelets (PRP) can be seen in direct contact with

the remaining cytoskeleton and are especially associated with the cell border

(Fig. 9). A similar finding was noted with GFP, as seen in Figure IOA. Many

platelets are in contact with the remaining cytoskeleton. Most cytoskeletal-

associated platelets had morphological changes associated with long pseudopodia.

9
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In addition all were in the vicinity of the cell border. A higher magnification

(Figs. 1OB, 10C) indicated that platelet pseudopodia may have penetrated the

cytoskeleton filamentous network.

TEM analysis of platelets bound to ECM material are illustrated in Figures

I1 and 12. In Figure II a platelet (WB) still containing its dense granules is seen

attached to microfilaments (100-120R) and amorphous material of what appears

to be ECM. A platelet (PRP) in contact with only amorphous material is

illustrated in Figure 12. Note the absence of pseudopodia and the presence of a

dense body and microtubules in the attached platelet. No apparent filamaents of

any size are seen in contact with the platelet.

DISCUSSION

Since Factor VIII is not found in either smooth muscle cells or fibroblasts

(25), but is specific to endothelial (36), it was concluded that cultures obtained

from bovine aortas were composed of endothelial cells. This was confirmed by

the demonstration of \VP bodies in these BAEC cultures (16,45).

In the recent work demonstrating the ability of BAEC to produce a

subendothelial matrix, cells were grown on glass coverslips and exposed only to

washed platelets (7). The present study utilized plastic (polymethylpentene)

substrates which removed the possibility of glass induced aggregation of

platelets and included different platelet sources such as PRP and WB.

Platelet perfusions past control (37 0 C) BAEC cultures were similar in

outcome to the results obtained using perfused aorta segments in vitro (40,41).

In both in vitro systems, platelets from PRP, GFP or WB did not interact with

undamaged endothelial cell monoldyers.

After freeze-thaw insult of BAEC cultures, generalized adhesion of

platelets from any source to damaged cells was not demonstrable. This is in

agreement with freeze-thaw damage to in vitro perfused aorta segments (40,41)

10
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and endothelial injury induced by heat (44) or hypotonic treatment (6). In

contrast to these findings cultured endothelial cells treated with thrombin (14) or

2-chloroacetaldehyde (48) permits platele't-endothelial interactions following

such treatme.nt. These studies suggest that physical insults to the endothelial

cell surface are insufficient to cause platelet interactions but that chemical

modifications may allow platelet deposition.

It was also our intent to minimize the influence of subendothelial

components on platelet adhesion and aggregation, by culturing BAEC in vitro.

However, freeze-thaw insults to one week old cultures revealed that BAEC

produced an ECM beneath the cells. It was therefore possible that this matrix

was substantially like in vivo subendothelium and capable of eliciting a

thrombogenic response.

In this regard, our results clearly demonstrated the thrombogenicity of this

endothelial cell produced matrix. Platelets derived from PRP, GFP or WB

readily adhered to the filaments of the matrix (Fig. 7A). Only platelets in WB

demonstrated an ability to aggregate as evidenced in Figure 7B. This is not

surprising since ADP may be released from red blood cells found only in the WB

perfusate and not present in either PRP or GFP suspensions. Degranualtion of

platelets attached to the ECM was not noted and in only WB cultures was

extensive pseudopodia formation found. This difference from earlier studies (F)

may be related to glass versus plastic substrates.

It has been shown that BAEC produce both collagen (19,24,26) and

fibronectin (5,19,29) and incorporate them into an ECM. The ability of

fibronectin to bind collagen (4,15,33) and promote cellular adhesion, when

- attached to substrates has also been studied (19). It is also interesting that

fibronectin is found on platelet membranes (4) and alpha granules (49) and as

such may be a receptor for platelet-collagen interactions (4). In addition,

V1
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investigators using bovine corneal endothelial cells demonstrated that the apical

cell surface was devoid of fibronectin and non-thrombogenic, whereas the basal

cell surface contained fibronectin and was thrombogenic (18). When the apical

cell surface was mutagenized with 2-choloracetaldehyde, fibronectin was found

on both the upper and lower cell surface (48). These altered cells now possess

the ability to bind platelets. The binding of platelets to ECM filaments exposed

following freeze-thaw may therefore be the result of platelet-collagen

fibronectin interactions.

Since platelets readily interacted with the extracellular filaments of the

ECM, it was of interest to determine whether platelets would also interact with

the intracellular cytoskeleton following exposure by TX treatment. Such

treatment digests the plasma membrane leaving only the nucleus and

cytoskeleton attached to the substrate (34,47). It became evident that

detergent-prepared cytoskeletons more readily interacted with platelets from all

sources than before treatment. Most attached platelets were usually located

near the cell periphery (Figs. 9A, 10A) and often had pseudopodia projecting

through the cytoskeleton (Figs. 10B, IOC) or onto the plastic substrate

(Fig. 10A).

In these TX-treated cultures, the presence of platelets in direct contact

with cytoskeleton components may be interpreted in several ways. Perhaps

platelet interaction with the cytoskeleton of BAEC in reality represented

pseudopodia contact with the now exposed ECM components located beneath the

intracellular cytoskeleton. The recent demonstration of intracellular fibronectin

in the cisternae of endoplasmic reticulum and secretory vesicles of fibroblasts

(20) raises another possibility. Penetration of the cytoskeleton by platelet

pseudopodia may represent platelet response to intracellular sites of fibronectin.

It is also possible that intracellular filaments not previously shown to elicit

platelet adhesion or activation may be responsible for mediating such a response.

12
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Although TEM micrographs clearly demonstrated platelets in direct

contact with both microfilaments and amorphous material, it was not possible to

definitely state the material was extracellular in origin. Therefore, additional

studies are needed to elucidate the response of platelets to both specific

intracellular and extracellular endothelial components, as they may relate to in

vivo subendothelial structures.

In summary, freeze-thaw damage of BAEC cultures induced platelet

interactions which were quite similar to those noted when studying platelet-

vessel wall interactions following freeze-thaw insult of isolated aortas. It may

therefore be possible to use this in vitro endothelial culture model to study the

effects of freeze-thaw insult of endothelial cells derived from those vascular

beds (peripheral) most affected by frostbite. Such studies may further define the

role of platelet-vessel wall interactions in the hemostasis induced tissue injury

associated with this form of cold trauma. In addition to freeze-thaw injury this

in vitro model has been shown to be useful in the study of platelet interactions

with cytoskeletal components and adds additional evidence that chemical

treatment of the endothelial cell surface can result in modifications of the

endothelium which enhances platelet deposition.

13
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FIGURES

Figure I Perfusion apparatus used to perfuse monolayer endothelial cell

cultures with platelet suspensions.

Figure 2 - Light micrograph of bovine endothelial cells exhibiting positive

immunofluoresence for Factor VIII antigen, x 420.

Figure 3 - Bovine endothelial cell containing Weibel Palade bodies. Note

rod like structure (arrows), x 1,915.

Figure 4 - SEM micrograph of control (37°C) bovine endothelial cells in

monolayer culture perfused with PRP. Note platelets are not in

_ contact with cells or plastic substrate, x 1,125.

Figure 5A - SEM micrograph of freeze-thaw (-200 C) damaged endothelial

cell. Nucleus is vible but cell membrane is perforated and

cell border is ruffled. Note ECM attached to the substrate

beneath the cell and several attached platelets (PRP), x 2,275.

Figure 5B - SEM micrograph of the.remaining nucleus of a freeze-thaw (-

200) damaged endothelial cell. Note extensive ECM with

adhering platelets (GFP), but not to remaining portion of

endothelial cell, x 2,390.

Figure 6A SEM micrograph of ECM produced by bovine endothelial cells,

x 7,635.
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Figure 6B - TEM micrograph of ECM. Note microfilaments (open arrows)

and amorphous material (closed arrows), x 40,615.

Figure 7A - SEM micrograph of PRP attached to ECM material. Note most

platelets are still disc shaped with small or no pseudopodia, x

2,325.

Figure 7B - SEM micrograph of platelets from WB attached to ECM. Note

aggregation and extensive shape and pseudopodia changes in

contrast to Fig. 7A, x 5,750.

Figure SA - Low power SEM micrograph of TX-treated endothelial cell

culture perfused with WB. Note the majority of platelets are

attached to ECM between the cells (arrows) or the region of the

cell border, x 470.

Figure 8B - Higher power SEM micrograph of platelets (WB) interaction

with substrate filaments in TX-treated culture, x 5,285.

Figure 9 - SEM micrograph of platelets (PRP) in direct contact with the

cytoskeleton of a TX-treated endothelial cell. Most are still

disc shaped but some have short pseudopodia (open arrow).

Note what is probably ECM on the plastic substrate (closed

arrows). x 5,180.
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Figure 10A - 5EM micrograph of platelets (GFP) on surface of TX-treated

endothelial cell. Note attached platelets are near the cell

border and have long pseudopodia (arrows). See inserts for

higher magnification, x 5,250.

Figure 10B - Higher magnification view of platelets (GFP) on edge of

cellular cytoskeleton, x 14,000.

Figure 10C - Higher magnification view of platelet (GFP) pseudopodia

(arrow) penetrating cellular cytoskeleton of TX-treated cell, x

11,000.

Figure 11 - TEM micrograph of platelet (WB) in contact with

microfilaments of ECM, x 23,920.

Figure 12 - TEM micrograph of platelet (PRP) in contact with amorphous

material of ECM, x 62,500.
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